Crime is a significant concern for cities worldwide, impacting public safety, quality of life, and socioeconomic development. In Buenos Aires, Argentina, addressing crime and enhancing public safety are critical priorities for local authorities and communities. To gain insights into crime dynamics and develop effective strategies for crime prevention and intervention, we embark on an extensive exploration and analysis of crime data reported in Buenos Aires for the year 2022.
This project combines traditional exploratory data analysis (EDA) techniques with predictive modeling to delve deep into the patterns, trends, and underlying factors associated with reported crime incidents. By leveraging data-driven approaches, we aim to uncover actionable insights that can inform decision-making processes and contribute to the development of evidence-based crime reduction strategies.
The dataset “delitos_2022.csv” provides a comprehensive record of crime incidents reported in Buenos Aires throughout the year 2022. It encompasses various attributes associated with each reported crime, including the type of crime, location, date, demographic information, and additional contextual details.
Our analysis will focus on exploring the temporal, spatial, and demographic dimensions of crime in Buenos Aires. Additionally, we will investigate the relationship between different crime types, examine crime hotspots across neighborhoods and districts, and analyze the demographic characteristics of both perpetrators and victims.
Furthermore, we will employ predictive modeling techniques to develop machine learning models capable of forecasting crime occurrences and identifying factors that contribute to the likelihood of specific types of crimes. By building predictive models, we aim to enhance our understanding of the complex dynamics underlying criminal activities and improve the accuracy of future crime predictions.
Throughout this analysis, we emphasize the importance of data-driven decision-making and the potential of data analytics to support policymakers, law enforcement agencies, and community stakeholders in their efforts to combat crime and promote public safety in Buenos Aires.
The dataset “delitos_2022.csv” is sourced from the Buenos Aires Open Data Portal and represents a valuable resource for studying crime trends and patterns in the city. The dataset contains anonymized information about reported crime incidents and is publicly available for research and analysis.
Variable | Description |
---|---|
id.mapa | Identifier map |
anio | Year of the crime occurrence |
mes | Month of the crime occurrence |
dia | Day of the crime occurrence |
fecha | Date of the crime occurrence |
franja | Hour of crime |
tipo | Type of crime |
subtipo | Subtype of crime |
uso_arma | Whether weapons were used in the crime (Yes/No) |
uso_moto | Whether motorcycles were involved in the crime (Yes/No) |
barrio | Neighborhood where the crime occurred |
comuna | District where the crime occurred |
latitud | Latitude coordinate of the crime location |
longitud | Longitude coordinate of the crime location |
cantidad | Quantity or count of crimes reported |
## Warning: package 'tidyverse' was built under R version 4.2.3
## Warning: package 'ggplot2' was built under R version 4.2.3
## Warning: package 'tibble' was built under R version 4.2.3
## Warning: package 'tidyr' was built under R version 4.2.3
## Warning: package 'readr' was built under R version 4.2.3
## Warning: package 'purrr' was built under R version 4.2.3
## Warning: package 'dplyr' was built under R version 4.2.3
## Warning: package 'stringr' was built under R version 4.2.3
## Warning: package 'lubridate' was built under R version 4.2.3
## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ──
## ✔ dplyr 1.1.4 ✔ readr 2.1.5
## ✔ forcats 1.0.0 ✔ stringr 1.5.1
## ✔ ggplot2 3.4.4 ✔ tibble 3.2.1
## ✔ lubridate 1.9.3 ✔ tidyr 1.3.1
## ✔ purrr 1.0.2
## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ──
## ✖ dplyr::filter() masks stats::filter()
## ✖ dplyr::lag() masks stats::lag()
## ℹ Use the conflicted package (<http://conflicted.r-lib.org/>) to force all conflicts to become errors
## Warning: package 'psych' was built under R version 4.2.3
##
## Attaching package: 'psych'
##
## The following objects are masked from 'package:ggplot2':
##
## %+%, alpha
## Warning: package 'gridExtra' was built under R version 4.2.3
##
## Attaching package: 'gridExtra'
##
## The following object is masked from 'package:dplyr':
##
## combine
## Warning: package 'reshape2' was built under R version 4.2.3
##
## Attaching package: 'reshape2'
##
## The following object is masked from 'package:tidyr':
##
## smiths
## Warning: package 'forestmodel' was built under R version 4.2.3
## Warning: package 'jtools' was built under R version 4.2.3
## Warning: package 'pROC' was built under R version 4.2.3
## Type 'citation("pROC")' for a citation.
##
## Attaching package: 'pROC'
##
## The following objects are masked from 'package:stats':
##
## cov, smooth, var
## Warning: package 'caret' was built under R version 4.2.3
## Loading required package: lattice
##
## Attaching package: 'caret'
##
## The following object is masked from 'package:purrr':
##
## lift
## Warning: package 'ResourceSelection' was built under R version 4.2.3
## ResourceSelection 0.3-6 2023-06-27
## Warning: package 'car' was built under R version 4.2.3
## Loading required package: carData
## Warning: package 'carData' was built under R version 4.2.3
##
## Attaching package: 'car'
##
## The following object is masked from 'package:psych':
##
## logit
##
## The following object is masked from 'package:dplyr':
##
## recode
##
## The following object is masked from 'package:purrr':
##
## some
## Warning: package 'modelr' was built under R version 4.2.3
## Registered S3 methods overwritten by 'broom':
## method from
## tidy.glht jtools
## tidy.summary.glht jtools
## Warning: package 'tseries' was built under R version 4.2.3
## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo
## Warning: package 'lmtest' was built under R version 4.2.3
## Loading required package: zoo
## Warning: package 'zoo' was built under R version 4.2.3
##
## Attaching package: 'zoo'
##
## The following objects are masked from 'package:base':
##
## as.Date, as.Date.numeric
## Warning: package 'sandwich' was built under R version 4.2.3
## Warning: package 'broom' was built under R version 4.2.3
##
## Attaching package: 'broom'
##
## The following object is masked from 'package:modelr':
##
## bootstrap
## id.mapa anio mes dia fecha franja tipo subtipo uso_arma
## 1 1 2022 OCTUBRE VIERNES 2022-10-14 3 Robo Robo total NO
## 2 2 2022 OCTUBRE JUEVES 2022-10-27 5 Robo Robo total NO
## 3 3 2022 NOVIEMBRE MARTES 2022-11-29 0 Robo Robo total NO
## 4 4 2022 NOVIEMBRE LUNES 2022-11-28 0 Robo Robo total NO
## 5 5 2022 NOVIEMBRE MIERCOLES 2022-11-30 3 Robo Robo total NO
## 6 6 2022 MAYO MARTES 2022-05-17 5 Robo Robo total NO
## uso_moto barrio comuna latitud longitud cantidad
## 1 NO CHACARITA 15 -34.584136 -58.454704 1
## 2 NO BARRACAS 4 -34.645043 -58.373194 1
## 3 NO CHACARITA 15 -34.589982 -58.446471 1
## 4 NO CHACARITA 15 -34.58832 -58.441232 1
## 5 NO RECOLETA 2 -34.596748 -58.413609 1
## 6 NO PARQUE AVELLANEDA 9 -34.640978 -58.480254 1
## 'data.frame': 140918 obs. of 15 variables:
## $ id.mapa : int 1 2 3 4 5 6 7 8 9 10 ...
## $ anio : int 2022 2022 2022 2022 2022 2022 2022 2022 2022 2022 ...
## $ mes : chr "OCTUBRE" "OCTUBRE" "NOVIEMBRE" "NOVIEMBRE" ...
## $ dia : chr "VIERNES" "JUEVES" "MARTES" "LUNES" ...
## $ fecha : chr "2022-10-14" "2022-10-27" "2022-11-29" "2022-11-28" ...
## $ franja : chr "3" "5" "0" "0" ...
## $ tipo : chr "Robo" "Robo" "Robo" "Robo" ...
## $ subtipo : chr "Robo total" "Robo total" "Robo total" "Robo total" ...
## $ uso_arma: chr "NO" "NO" "NO" "NO" ...
## $ uso_moto: chr "NO" "NO" "NO" "NO" ...
## $ barrio : chr "CHACARITA" "BARRACAS" "CHACARITA" "CHACARITA" ...
## $ comuna : chr "15" "4" "15" "15" ...
## $ latitud : chr "-34.584136" "-34.645043" "-34.589982" "-34.58832" ...
## $ longitud: chr "-58.454704" "-58.373194" "-58.446471" "-58.441232" ...
## $ cantidad: int 1 1 1 1 1 1 1 1 1 1 ...
Our dataset comprises a total of 140918 observations
and
15 columns
, featuring variables of only two types :
Int
(Integer) : Comprising 3 variables
Ch
(Character) : Comprising 12 variables
## id.mapa anio mes dia fecha franja tipo subtipo
## 0 0 0 0 0 47 0 0
## uso_arma uso_moto barrio comuna latitud longitud cantidad
## 0 0 2391 2393 2385 2385 0
Several columns contain empty cells and “null” or “na” values. The
columns barrio
, comuna
, latitud
,
and longitud
are interrelated, so removing null values from
the comuna
column will suffice. Additionally, we’ll remove
null values from the franja
column.
## id.mapa anio mes dia fecha franja tipo subtipo
## 0 0 0 0 0 0 0 0
## uso_arma uso_moto barrio comuna latitud longitud cantidad
## 0 0 0 0 0 0 0
Great! Now our dataset is clean and free from any empty or null values that could potentially impact our subsequent analysis.
Debido al idioma del pais de origen de nuestra base de datos, las columnas estan en español, esto puede complicar la lectura para algunos analistas por lo que intentaremos traducir la base para que sea mas legible para los demas.
Great! Now all columns and values are translated. Now we gonna create some columns for see better the hour of crimes in Argentina
## id year season month day date hour hour_interval type
## 1 1 2022 Autumn october friday 2022-10-14 4 Night Robbery
## 2 2 2022 Autumn october thursday 2022-10-27 6 Night Robbery
## 3 3 2022 Autumn november tuesday 2022-11-29 1 Night Robbery
## 4 4 2022 Autumn november monday 2022-11-28 1 Night Robbery
## 5 5 2022 Autumn november wednesday 2022-11-30 4 Night Robbery
## 6 6 2022 Spring may tuesday 2022-05-17 6 Night Robbery
## subtype weapon_use motorcycle_use neighborhood district latitude
## 1 Total robbery No No CHACARITA 15 -34.584136
## 2 Total robbery No No BARRACAS 4 -34.645043
## 3 Total robbery No No CHACARITA 15 -34.589982
## 4 Total robbery No No CHACARITA 15 -34.58832
## 5 Total robbery No No RECOLETA 2 -34.596748
## 6 Total robbery No No PARQUE AVELLANEDA 9 -34.640978
## longitude quantity
## 1 -58.454704 1
## 2 -58.373194 1
## 3 -58.446471 1
## 4 -58.441232 1
## 5 -58.413609 1
## 6 -58.480254 1
## `summarise()` has grouped output by 'season'. You can override using the
## `.groups` argument.
## `geom_smooth()` using formula = 'y ~ x'
## `summarise()` has grouped output by 'day'. You can override using the `.groups`
## argument.
## `summarise()` has grouped output by 'hour_interval'. You can override using the
## `.groups` argument.
## `summarise()` has grouped output by 'hour_interval'. You can override using the
## `.groups` argument.
## Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
## ℹ Please use `linewidth` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was
## generated.
## `summarise()` has grouped output by 'hour', 'neighborhood'. You can override
## using the `.groups` argument.
## `summarise()` has grouped output by 'hour'. You can override using the
## `.groups` argument.
##
## Call:
## lm(formula = crime_count ~ hour + neighborhood + 0, data = regresion_data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -205.795 -19.503 -2.837 18.043 193.476
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## hour1 60.858 10.021 6.073 1.74e-09 ***
## hour2 -41.017 10.021 -4.093 4.57e-05 ***
## hour3 -50.872 10.021 -5.076 4.53e-07 ***
## hour4 -52.038 10.021 -5.193 2.47e-07 ***
## hour5 -50.872 10.021 -5.076 4.53e-07 ***
## hour6 -33.663 10.021 -3.359 0.000809 ***
## hour7 -10.997 10.021 -1.097 0.272743
## hour8 31.003 10.021 3.094 0.002027 **
## hour9 46.920 10.021 4.682 3.20e-06 ***
## hour10 30.024 10.021 2.996 0.002797 **
## hour11 33.566 10.021 3.349 0.000838 ***
## hour12 23.274 10.021 2.323 0.020391 *
## hour13 48.170 10.021 4.807 1.75e-06 ***
## hour14 28.524 10.021 2.846 0.004505 **
## hour15 32.795 10.021 3.273 0.001099 **
## hour16 35.691 10.021 3.562 0.000385 ***
## hour17 41.733 10.021 4.164 3.37e-05 ***
## hour18 53.337 10.021 5.322 1.24e-07 ***
## hour19 63.024 10.021 6.289 4.63e-10 ***
## hour20 52.316 10.021 5.221 2.14e-07 ***
## hour21 55.337 10.021 5.522 4.20e-08 ***
## hour22 31.024 10.021 3.096 0.002013 **
## hour23 21.587 10.021 2.154 0.031452 *
## hour24 4.274 10.021 0.427 0.669809
## neighborhoodALMAGRO 199.375 11.653 17.110 < 2e-16 ***
## neighborhoodBALVANERA 373.833 11.653 32.081 < 2e-16 ***
## neighborhoodBARRACAS 172.333 11.653 14.789 < 2e-16 ***
## neighborhoodBELGRANO 155.917 11.653 13.380 < 2e-16 ***
## neighborhoodBOCA 77.542 11.653 6.654 4.51e-11 ***
## neighborhoodBOEDO 64.458 11.653 5.532 3.98e-08 ***
## neighborhoodCABALLITO 232.417 11.653 19.945 < 2e-16 ***
## neighborhoodCHACARITA 57.792 11.653 4.960 8.20e-07 ***
## neighborhoodCOGHLAN 4.292 11.653 0.368 0.712723
## neighborhoodCOLEGIALES 49.333 11.653 4.234 2.49e-05 ***
## neighborhoodCONSTITUCION 170.833 11.653 14.660 < 2e-16 ***
## neighborhoodFLORES 307.833 11.653 26.417 < 2e-16 ***
## neighborhoodFLORESTA 53.250 11.653 4.570 5.45e-06 ***
## neighborhoodLINIERS 82.958 11.653 7.119 1.98e-12 ***
## neighborhoodMATADEROS 117.083 11.653 10.048 < 2e-16 ***
## neighborhoodMONSERRAT 116.750 11.653 10.019 < 2e-16 ***
## neighborhoodMONTE CASTRO 29.833 11.653 2.560 0.010596 *
## neighborhoodNUEVA POMPEYA 109.917 11.653 9.433 < 2e-16 ***
## neighborhoodNUÑEZ 70.250 11.653 6.029 2.27e-09 ***
## neighborhoodPALERMO 476.292 11.653 40.874 < 2e-16 ***
## neighborhoodPARQUE AVELLANEDA 79.000 11.653 6.780 1.98e-11 ***
## neighborhoodPARQUE CHACABUCO 109.375 11.653 9.386 < 2e-16 ***
## neighborhoodPARQUE CHAS 4.000 11.653 0.343 0.731463
## neighborhoodPARQUE PATRICIOS 72.458 11.653 6.218 7.17e-10 ***
## neighborhoodPATERNAL 17.292 11.653 1.484 0.138122
## neighborhoodPUERTO MADERO 2.208 11.653 0.190 0.849727
## neighborhoodRECOLETA 244.708 11.653 21.000 < 2e-16 ***
## neighborhoodRETIRO 132.625 11.653 11.381 < 2e-16 ***
## neighborhoodSAAVEDRA 80.458 11.653 6.905 8.57e-12 ***
## neighborhoodSAN CRISTOBAL 80.583 11.653 6.915 7.97e-12 ***
## neighborhoodSAN NICOLAS 191.833 11.653 16.463 < 2e-16 ***
## neighborhoodSAN TELMO 60.833 11.653 5.221 2.14e-07 ***
## neighborhoodVELEZ SARSFIELD 32.833 11.653 2.818 0.004926 **
## neighborhoodVERSALLES 6.000 11.653 0.515 0.606727
## neighborhoodVILLA CRESPO 140.375 11.653 12.047 < 2e-16 ***
## neighborhoodVILLA DEL PARQUE 46.625 11.653 4.001 6.73e-05 ***
## neighborhoodVILLA DEVOTO 82.917 11.653 7.116 2.02e-12 ***
## neighborhoodVILLA GRAL. MITRE 30.833 11.653 2.646 0.008263 **
## neighborhoodVILLA LUGANO 217.833 11.653 18.694 < 2e-16 ***
## neighborhoodVILLA LURO 29.750 11.653 2.553 0.010815 *
## neighborhoodVILLA ORTUZAR 9.625 11.653 0.826 0.408993
## neighborhoodVILLA PUEYRREDON 32.000 11.653 2.746 0.006130 **
## neighborhoodVILLA REAL 4.708 11.653 0.404 0.686252
## neighborhoodVILLA RIACHUELO 10.625 11.653 0.912 0.362074
## neighborhoodVILLA SANTA RITA 27.208 11.653 2.335 0.019729 *
## neighborhoodVILLA SOLDATI 97.708 11.653 8.385 < 2e-16 ***
## neighborhoodVILLA URQUIZA 97.125 11.653 8.335 2.33e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 40.37 on 1081 degrees of freedom
## Multiple R-squared: 0.9437, Adjusted R-squared: 0.94
## F-statistic: 255.4 on 71 and 1081 DF, p-value: < 2.2e-16
Observations | 1152 |
Dependent variable | crime_count |
Type | OLS linear regression |
F(71,1081) | 255.41 |
R² | 0.94 |
Adj. R² | 0.94 |
## `geom_smooth()` using formula = 'y ~ x'
## # A tibble: 1,152 × 9
## crime_count hour neighborhood .fitted .resid .hat .sigma .cooksd
## <int> <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 116 4 BALVANERA 322. -206. 0.0616 39.9 0.0256
## 2 127 5 BALVANERA 323. -196. 0.0616 39.9 0.0232
## 3 603 16 BALVANERA 410. 193. 0.0616 39.9 0.0226
## 4 630 19 BALVANERA 437. 193. 0.0616 39.9 0.0226
## 5 719 20 PALERMO 529. 190. 0.0616 39.9 0.0219
## 6 589 14 BALVANERA 402. 187. 0.0616 40.0 0.0211
## 7 138 3 BALVANERA 323. -185. 0.0616 40.0 0.0207
## 8 584 15 BALVANERA 407. 177. 0.0616 40.0 0.0190
## 9 163 2 BALVANERA 333. -170. 0.0616 40.0 0.0174
## 10 706 1 PALERMO 537. 169. 0.0616 40.0 0.0172
## # ℹ 1,142 more rows
## # ℹ 1 more variable: .std.resid <dbl>
##
## Jarque Bera Test
##
## data: linear_model$residuals
## X-squared = 1382.3, df = 2, p-value < 2.2e-16
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -205.795 -19.503 -2.837 0.000 18.043 193.476
##
## studentized Breusch-Pagan test
##
## data: linear_model
## BP = 606.98, df = 70, p-value < 2.2e-16
##
## t test of coefficients:
##
## Estimate Std. Error t value Pr(>|t|)
## hour1 60.8576 9.2180 6.6021 6.343e-11 ***
## hour2 -41.0174 9.7753 -4.1960 2.939e-05 ***
## hour3 -50.8715 10.2401 -4.9679 7.864e-07 ***
## hour4 -52.0382 10.6324 -4.8943 1.137e-06 ***
## hour5 -50.8715 10.2913 -4.9431 8.905e-07 ***
## hour6 -33.6632 9.3564 -3.5979 0.0003353 ***
## hour7 -10.9965 9.0216 -1.2189 0.2231419
## hour8 31.0035 8.5771 3.6147 0.0003146 ***
## hour9 46.9201 8.4373 5.5610 3.379e-08 ***
## hour10 30.0243 7.8250 3.8370 0.0001318 ***
## hour11 33.5660 7.1894 4.6688 3.410e-06 ***
## hour12 23.2743 7.1059 3.2754 0.0010888 **
## hour13 48.1701 8.0753 5.9651 3.308e-09 ***
## hour14 28.5243 8.4856 3.3615 0.0008023 ***
## hour15 32.7951 8.3112 3.9459 8.463e-05 ***
## hour16 35.6910 8.4682 4.2147 2.710e-05 ***
## hour17 41.7326 8.1391 5.1274 3.479e-07 ***
## hour18 53.3368 9.1211 5.8476 6.599e-09 ***
## hour19 63.0243 9.9418 6.3394 3.383e-10 ***
## hour20 52.3160 9.0384 5.7882 9.313e-09 ***
## hour21 55.3368 8.5743 6.4538 1.644e-10 ***
## hour22 31.0243 7.4980 4.1377 3.780e-05 ***
## hour23 21.5868 7.1751 3.0086 0.0026857 **
## hour24 4.2743 7.5657 0.5650 0.5722170
## neighborhoodALMAGRO 199.3750 10.6840 18.6611 < 2.2e-16 ***
## neighborhoodBALVANERA 373.8333 29.2184 12.7945 < 2.2e-16 ***
## neighborhoodBARRACAS 172.3333 8.2689 20.8413 < 2.2e-16 ***
## neighborhoodBELGRANO 155.9167 12.1081 12.8771 < 2.2e-16 ***
## neighborhoodBOCA 77.5417 7.6456 10.1419 < 2.2e-16 ***
## neighborhoodBOEDO 64.4583 7.4505 8.6516 < 2.2e-16 ***
## neighborhoodCABALLITO 232.4167 15.3133 15.1774 < 2.2e-16 ***
## neighborhoodCHACARITA 57.7917 8.2300 7.0221 3.858e-12 ***
## neighborhoodCOGHLAN 4.2917 8.9802 0.4779 0.6328139
## neighborhoodCOLEGIALES 49.3333 7.5514 6.5330 9.907e-11 ***
## neighborhoodCONSTITUCION 170.8333 8.0043 21.3428 < 2.2e-16 ***
## neighborhoodFLORES 307.8333 18.6055 16.5453 < 2.2e-16 ***
## neighborhoodFLORESTA 53.2500 8.2171 6.4804 1.387e-10 ***
## neighborhoodLINIERS 82.9583 6.9949 11.8598 < 2.2e-16 ***
## neighborhoodMATADEROS 117.0833 8.4425 13.8683 < 2.2e-16 ***
## neighborhoodMONSERRAT 116.7500 8.2814 14.0978 < 2.2e-16 ***
## neighborhoodMONTE CASTRO 29.8333 8.2341 3.6232 0.0003045 ***
## neighborhoodNUEVA POMPEYA 109.9167 8.0976 13.5740 < 2.2e-16 ***
## neighborhoodNUÑEZ 70.2500 7.4311 9.4535 < 2.2e-16 ***
## neighborhoodPALERMO 476.2917 19.3987 24.5527 < 2.2e-16 ***
## neighborhoodPARQUE AVELLANEDA 79.0000 8.2526 9.5728 < 2.2e-16 ***
## neighborhoodPARQUE CHACABUCO 109.3750 8.5059 12.8587 < 2.2e-16 ***
## neighborhoodPARQUE CHAS 4.0000 9.1144 0.4389 0.6608452
## neighborhoodPARQUE PATRICIOS 72.4583 7.5764 9.5637 < 2.2e-16 ***
## neighborhoodPATERNAL 17.2917 8.9199 1.9386 0.0528157 .
## neighborhoodPUERTO MADERO 2.2083 9.2106 0.2398 0.8105622
## neighborhoodRECOLETA 244.7083 15.6320 15.6543 < 2.2e-16 ***
## neighborhoodRETIRO 132.6250 8.3186 15.9432 < 2.2e-16 ***
## neighborhoodSAAVEDRA 80.4583 7.4740 10.7651 < 2.2e-16 ***
## neighborhoodSAN CRISTOBAL 80.5833 7.5991 10.6043 < 2.2e-16 ***
## neighborhoodSAN NICOLAS 191.8333 15.3238 12.5187 < 2.2e-16 ***
## neighborhoodSAN TELMO 60.8333 8.9326 6.8103 1.613e-11 ***
## neighborhoodVELEZ SARSFIELD 32.8333 8.1905 4.0087 6.524e-05 ***
## neighborhoodVERSALLES 6.0000 9.0498 0.6630 0.5074755
## neighborhoodVILLA CRESPO 140.3750 8.9150 15.7459 < 2.2e-16 ***
## neighborhoodVILLA DEL PARQUE 46.6250 8.2430 5.6563 1.979e-08 ***
## neighborhoodVILLA DEVOTO 82.9167 7.4814 11.0831 < 2.2e-16 ***
## neighborhoodVILLA GRAL. MITRE 30.8333 8.4176 3.6630 0.0002614 ***
## neighborhoodVILLA LUGANO 217.8333 11.0599 19.6958 < 2.2e-16 ***
## neighborhoodVILLA LURO 29.7500 8.5145 3.4941 0.0004950 ***
## neighborhoodVILLA ORTUZAR 9.6250 8.6628 1.1111 0.2667859
## neighborhoodVILLA PUEYRREDON 32.0000 8.0252 3.9874 7.128e-05 ***
## neighborhoodVILLA REAL 4.7083 9.1206 0.5162 0.6058000
## neighborhoodVILLA RIACHUELO 10.6250 9.0390 1.1755 0.2400675
## neighborhoodVILLA SANTA RITA 27.2083 8.7651 3.1042 0.0019577 **
## neighborhoodVILLA SOLDATI 97.7083 7.4155 13.1762 < 2.2e-16 ***
## neighborhoodVILLA URQUIZA 97.1250 7.5064 12.9390 < 2.2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1